A power-law upper bound on the correlations in the two-dimensional random-field Ising model

Ron Peled, Tel Aviv University Based on a joint work with Michael Aizenman, Princeton

ICMP 2018, Montreal

Random-field Ising model

• Standard Ising model:

Domain $\Lambda \subset \mathbb{Z}^d$. Boundary conditions τ outside Λ . Energy of configuration $\sigma: \Lambda \to \{-1,1\}$ given by

$$H^{\Lambda,\tau}(\sigma) = -J \sum_{\substack{u \sim v, \\ u, v \in \Lambda}} \sigma_u \sigma_v - J \sum_{\substack{u \sim v, \\ u \in \Lambda, v \notin \Lambda}} \sigma_u \tau_v - h \sum_{v \in \Lambda} \sigma_v$$

• At temperature *T* :

$$\operatorname{Prob}(\sigma) \propto \exp\left(-\frac{1}{T}H^{\Lambda,\tau}(\sigma)\right)$$

• Random-field Ising model (RFIM):

$$H^{\Lambda,\tau}(\sigma) = -J \sum_{\substack{u \sim v, \\ u, v \in \Lambda}} \sigma_u \sigma_v - J \sum_{\substack{u \sim v, \\ u \in \Lambda, v \notin \Lambda}} \sigma_u \tau_v - \varepsilon \sum_{v \in \Lambda} \eta_v \sigma_v$$

with (η_v) a quenched random field.

• In this talk – (η_v) independent standard Gaussians.

Long-range order

- The Ising model, at h = 0, exhibits long-range order at low temperatures.
- Is this the case also for the random-field Ising model?
- No, when ε is large! (strong disorder regime)
- Proof for T = 0:

If $|\eta_v| > 2d \cdot \frac{J}{\varepsilon}$ then necessarily $\operatorname{sign}(\sigma_v) = \operatorname{sign}(\eta_v)$.

• At large ε , such vertices are likely to separate the origin from the boundary of $\Lambda(L)$. Thus

$$\mathbb{E}\left[<\sigma_0>_T^{\Lambda(L),+}\right]\underset{L\to\infty}{\longrightarrow} 0$$

with convergence occurring exponentially fast in *L*.

• Recent more quantitative results by Camia-Jiang-Newman(18).

Imry-Ma phenomenon

- Imry-Ma (75) considered small ε (weak disorder) and argued that:
 - Long-range order occurs in dimensions $d \ge 3$.
 - No long-range order in two dimensions: Unique Gibbs state for all $T \ge 0$. Even for arbitrarily weak disorder!
- An essence of the argument: With plus bounday conditions, is the plus configuration favored over the minus configuration? Energy difference is

$$H^{\Lambda(L),+}(+) - H^{\Lambda(L),+}(-) \approx \mathbf{J} \cdot L^{d-1} \pm \varepsilon \cdot L^{\frac{d}{2}}$$

Boundary wins when $d \geq 3$.

Random field wins, due to random fluctuations, when d = 2.

• Proofs. $d \ge 3$: Imbrie (T = 0, 85), Bricmont-Kupiainen (88)

d = 2: Aizenman-Wehr (89) (quantum: Aizenman-Greenblatt-Lebowitz 09)

Rate of decay of boundary effect

- How fast does the boundary effect decay in two dimensions? How large is $\mathbb{E}\left[< \sigma_0 >_T^{\Lambda(L),+} \right]$?
- <u>Main result</u> (power-law upper bound): In two dimensions, for any $T \ge 0$, $J, \varepsilon > 0$,

$$\mathbb{E}\left[< \sigma_0 >_T^{\Lambda(L),+}
ight] \le rac{1}{L^{\gamma}} \quad \text{for large L}$$

the obtained power γ is very small, behaving as $\gamma \approx \exp\left(-c \left(\frac{J}{\varepsilon}\right)^2\right)$ for small $\frac{\varepsilon}{J}$

 <u>Corollary</u> (by FKG inequality): A similar power-law upper bound for correlations in the RFIM

• Improves Chatterjee (17)
$$\frac{1}{\sqrt{\log(\log(L))}}$$
 decay.

Ideas of proof for T = 0

- Denote ground-state configuration by $\sigma^{\Lambda,\tau}$.
- Influence-percolation: $P_L \coloneqq \mathbb{E}\left[\sigma_0^{\Lambda(L),+}\right] = \mathbb{P}\left(\sigma_0^{\Lambda(L),+} > \sigma_0^{\Lambda(L),-}\right)$ Main result: Power-law upper bound on P_L .
- First observable: The number of sites in $\Lambda(\ell)$ influenced by boundary conditions on $\Lambda(3\ell)$

$$D_{\ell}(\eta) := \left| \left\{ \nu \in \Lambda(\ell) : \sigma_{\nu}^{\Lambda(3\ell),+}(\eta) > \sigma_{\nu}^{\Lambda(3\ell),-}(\eta) \right\} \right|$$

- Note: Using FKG inequality, $\mathbb{E}[D_{\ell}(\eta)] \ge \ell^2 \cdot P_{4\ell}$.
- Second observable: Work in annulus Λ(3ℓ) \ Λ(ℓ) with + or − boundary conditions inside and outside.
- Ground-state energies $\mathcal{E}^{+,+}$, $\mathcal{E}^{-,-}$, $\mathcal{E}^{+,-}$, $\mathcal{E}^{-,+}$. Functions of field η .
- Surface tension: $\tau_{\ell}(\eta) \coloneqq -(\mathcal{E}^{+,+} + \mathcal{E}^{-,-} \mathcal{E}^{+,-} \mathcal{E}^{-,+}).$

Main steps

- **Step 1** (upper bound): $\mathbb{E}[\tau_{\ell}(\eta)] \leq CJ \cdot \ell \cdot P_{\ell-1}$.
- Step 2 (exact expression):

$$\mathbb{E}[\tau_{\ell}(\eta)] = \frac{2\varepsilon}{\ell} \int_{-\infty}^{\infty} \mathbb{E}[D_{\ell}(\eta^{t})] dt$$

with $\eta^{t} \equiv \eta + \frac{t}{\ell}$ inside $\Lambda(\ell)$,
 $\eta^{t} \equiv \eta$ outside $\Lambda(\ell)$.

Note: the sum $\sum_{v \in \Lambda(\ell)} \eta_v$ increases by t standard deviations in η^t

• Put together, these imply the anti-concentration bound

$$\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}(D_{\ell})} < \frac{1}{2}\right) \ge \mathbb{P}\left(|N(0,1)| > C \cdot \frac{J}{\varepsilon} \cdot \frac{P_{\ell-1}}{P_{4\ell}}\right)$$

Variance bound

• Anti-concentration bound:

$$\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}(D_{\ell})} < \frac{1}{2}\right) \ge \mathbb{P}\left(|N(0,1)| > C \cdot \frac{J}{\varepsilon} \cdot \frac{P_{\ell-1}}{P_{4\ell}}\right)$$

- Right-hand side is constant when P_{ℓ} approximately a power of ℓ .
- Step 3: This is contrasted with a variance bound: If $P_{\ell} \approx \frac{1}{\ell^{\delta}}$ then $\operatorname{Var}(D_{\ell}) \leq C \cdot \delta \cdot \left(\mathbb{E}(D_{\ell})\right)^2$.
- Chebyshev's inequality implies that $\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}(D_{\ell})} < \frac{1}{2}\right) < C \cdot \delta$
- Contradiction arises if δ is too small.

Step 1: surface tension upper bound

- Claim: $\mathbb{E}[\tau_{\ell}(\eta)] \leq CJ \cdot \ell \cdot P_{\ell-1}$ with $\tau_{\ell}(\eta) \coloneqq -(\mathcal{E}^{+,+} + \mathcal{E}^{-,-} - \mathcal{E}^{+,-} - \mathcal{E}^{-,+}).$
- Proof: Let $\sigma^{s,s'}$ be the ground state in $\Lambda(3\ell) \setminus \Lambda(\ell)$ subject to s, s' boundary conditions inside and outside. Then $\mathcal{E}^{s,s'}$ is its energy.
- Form mixed configurations $\tilde{\sigma}^{+,-}$ and $\tilde{\sigma}^{-,+}$: $\tilde{\sigma}^{s,s'} \equiv \sigma^{s,s}$ on $\Lambda(3\ell) \setminus \Lambda(2\ell)$ $\tilde{\sigma}^{s,s'} \equiv \sigma^{s',s'}$ on $\Lambda(2\ell) \setminus \Lambda(\ell)$ and write $\tilde{\mathcal{E}}^{s,s'}$ for their energy with s, s' boundary conditions.
- Of course, $\mathcal{E}^{+,-} \leq \tilde{\mathcal{E}}^{+,-}$ and $\mathcal{E}^{+,-} \leq \tilde{\mathcal{E}}^{+,-}$ by def. of ground state. Thus $\tau_{\ell}(\eta) \leq -(\mathcal{E}^{+,+} + \mathcal{E}^{-,-} - \tilde{\mathcal{E}}^{+,-} - \tilde{\mathcal{E}}^{+,-})$
- The sole contribution to the right-hand side comes from the bonds of ∂Λ(2ℓ) where σ^{+,+} differs from σ^{-,-}. Taking expectation over the random field finishes the proof.

Step 2: formula for surface tension

- Claim: $\mathbb{E}[\tau_{\ell}(\eta)] = \frac{2\varepsilon}{\ell} \int_{-\infty}^{\infty} \mathbb{E}[D_{\ell}(\eta^{t})] dt$ with $\eta^{t} \equiv \eta + \frac{t}{\ell}$ inside $\Lambda(\ell)$, $\eta^{t} \equiv \eta$ outside $\Lambda(\ell)$. $D_{\ell}(\eta^{t}) := |\{v \in \Lambda(\ell) : \sigma_{v}^{\Lambda(3\ell),+}(\eta^{t}) > \sigma_{v}^{\Lambda(3\ell),-}(\eta^{t})\}|$
- Proof: Let $\mathcal{E}^+, \mathcal{E}^-$ be the ground-state energies in $\Lambda(3\ell)$ with +,boundary conditions, respectively.

• Set
$$G(\eta) \coloneqq -(\mathcal{E}^+ - \mathcal{E}^-)$$

- Then $\tau_{\ell}(\eta) = -(\mathcal{E}^{+,+} + \mathcal{E}^{-,-} - \mathcal{E}^{+,-} - \mathcal{E}^{-,+}) = \lim_{t \to \infty} G(\eta^t) - G(\eta^{-t})$
- Now note that

$$\frac{\partial G}{\partial \eta_{\nu}}(\eta) = 2\varepsilon \cdot 1\left\{\sigma_{\nu}^{\Lambda(3\ell),+}(\eta) > \sigma_{\nu}^{\Lambda(3\ell),-}(\eta)\right\}$$

Step 3: Variance upper bound

- Claim: If $P_{\ell} \approx \frac{1}{\ell^{\delta}}$ then $\operatorname{Var}(D_{\ell}) \leq C \cdot \delta \cdot \left(\mathbb{E}(D_{\ell})\right)^2$.
- Proof: Write $E_v \coloneqq \left\{ \sigma_v^{\Lambda(3\ell),+}(\eta) > \sigma_v^{\Lambda(3\ell),-}(\eta) \right\}.$
- Need to upper bound, for $u, v \in \Lambda(\ell)$, $Cov(1\{E_u\}, 1\{E_v\}) = \mathbb{P}(E_u \cap E_v) - \mathbb{P}(E_u)\mathbb{P}(E_v)$
- Use $\mathbb{P}(E_u) \ge P_{4\ell} \approx (4\ell)^{-\delta}$ $\mathbb{P}(E_u \cap E_v) \le \left(P_{\operatorname{dist}(u,v)/2}\right)^2 \approx (\operatorname{dist}(u,v)/2)^{-2\delta}$
- If δ is small and, say, $dist(u, v) \ge \ell/100$, get

$$\mathsf{Cov}(1\{E_u\}, 1\{E_v\}) \le \left(\frac{200}{\ell}\right)^{2\delta} - \left(\frac{1}{4\ell}\right)^{2\delta} \approx c \cdot \delta \cdot \ell^{-2\delta}$$

• Can sum such upper bounds to get required result.

Open questions

 Is there a Kosterlitz-Thouless-type transition from exponential to power-law decay of correlations as the random field becomes weaker?

Mechanism which would imply power-law bound: If the influence percolation behaves like Mandelbrot percolation. (connectivity of Mandelbrot percolation – Chayes-Chayes-Durrett)

• For systems with continuous symmetry, such as the random-field XY model, the critical dimension for long-range order is $d_c = 4$ (Imry-Ma 75, Aizenman-Wehr 89).

Obtain a quantitative decay of correlations there.

