A power-law upper bound on the correlations in the two-dimensional random-field Ising model

Ron Peled, Tel Aviv University

Based on a joint work with Michael Aizenman, Princeton

ICMP 2018, Montreal

Random-field Ising model

- Standard Ising model:

Domain $\Lambda \subset \mathbb{Z}^{d}$. Boundary conditions τ outside Λ.
Energy of configuration $\sigma: \Lambda \rightarrow\{-1,1\}$ given by

$$
H^{\Lambda, \tau}(\sigma)=-J \sum_{\substack{u \sim v, u, v \in \Lambda}} \sigma_{u} \sigma_{v}-J \sum_{\substack{u \sim v, u \in \Lambda, v \notin \Lambda}} \sigma_{u} \tau_{v}-h \sum_{v \in \Lambda} \sigma_{v}
$$

- At temperature T :

$$
\operatorname{Prob}(\sigma) \propto \exp \left(-\frac{1}{T} H^{\Lambda, \tau}(\sigma)\right)
$$

- Random-field Ising model (RFIM):

$$
H^{\Lambda, \tau}(\sigma)=-J \sum_{\substack{u \sim v, u, v \in \Lambda}} \sigma_{u} \sigma_{v}-J \sum_{\substack{u \sim v, u \in \Lambda, v \in \Lambda}} \sigma_{u} \tau_{v}-\varepsilon \sum_{v \in \Lambda} \eta_{v} \sigma_{v}
$$

with $\left(\eta_{v}\right)$ a quenched random field.

- In this talk - $\left(\eta_{v}\right)$ independent standard Gaussians.

Long-range order

- The Ising model, at $h=0$, exhibits long-range order at low temperatures.
- Is this the case also for the random-field Ising model?
- No, when ε is large! (strong disorder regime)
- Proof for $T=0$:

$$
\text { If }\left|\eta_{v}\right|>2 d \cdot \frac{J}{\varepsilon} \text { then necessarily } \operatorname{sign}\left(\sigma_{v}\right)=\operatorname{sign}\left(\eta_{v}\right)
$$

- At large ε, such vertices are likely to separate the origin from the boundary of $\Lambda(\mathrm{L})$. Thus

$$
\mathbb{E}\left[<\sigma_{0}>_{T}^{\Lambda(L),+}\right] \underset{L \rightarrow \infty}{\longrightarrow} 0
$$

with convergence occurring exponentially fast in L.

- Recent more quantitative results by Camia-Jiang-Newman(18).

Imry-Ma phenomenon

- Imry-Ma (75) considered small ε (weak disorder) and argued that:
- Long-range order occurs in dimensions $d \geq 3$.
- No long-range order in two dimensions:

Unique Gibbs state for all $T \geq 0$. Even for arbitrarily weak disorder!

- An essence of the argument:

With plus bounday conditions,
is the plus configuration favored over the minus configuration?
Energy difference is

$$
H^{\Lambda(L),+}(+)-H^{\Lambda(L),+}(-) \approx \mathrm{J} \cdot L^{d-1} \pm \varepsilon \cdot L^{\frac{d}{2}}
$$

Boundary wins when $d \geq 3$.
Random field wins, due to random fluctuations, when $d=2$.

- Proofs. d \geq 3: Imbrie ($T=0,85$), Bricmont-Kupiainen (88)

$$
d=2: \text { Aizenman-Wehr (89) }
$$

(quantum: Aizenman-Greenblatt-Lebowitz 09)

Rate of decay of boundary effect

- How fast does the boundary effect decay in two dimensions? How large is $\mathbb{E}\left[<\sigma_{0}>_{T}^{\Lambda(L),+}\right]$?
- Main result (power-law upper bound): In two dimensions, for any $\mathrm{T} \geq 0, J, \varepsilon>0$,

$$
\mathbb{E}\left[<\sigma_{0}>_{T}^{\Lambda(L),+}\right] \leq \frac{1}{L^{\gamma}} \quad \text { for large } \mathrm{L}
$$

the obtained power γ is very small, behaving as

$$
\gamma \approx \exp \left(-c\left(\frac{J}{\varepsilon}\right)^{2}\right) \text { for small } \frac{\varepsilon}{J}
$$

- Corollary (by FKG inequality):

A similar power-law upper bound for correlations in the RFIM

- Improves Chatterjee (17) $\frac{1}{\sqrt{\log (\log (L))}}$ decay.

Ideas of proof for $T=0$

- Denote ground-state configuration by $\sigma^{\Lambda, \tau}$.
- Influence-percolation: $P_{L}:=\mathbb{E}\left[\sigma_{0}^{\Lambda(L),+}\right]=\mathbb{P}\left(\sigma_{0}^{\Lambda(L),+}>\sigma_{0}^{\Lambda(L),-}\right)$ Main result: Power-law upper bound on P_{L}.
- First observable: The number of sites in $\Lambda(\ell)$ influenced by boundary conditions on $\Lambda(3 \ell)$

$$
D_{\ell}(\eta):=\left|\left\{v \in \Lambda(\ell): \sigma_{v}^{\Lambda(3 \ell),+}(\eta)>\sigma_{v}^{\Lambda(3 \ell),-}(\eta)\right\}\right|
$$

- Note: Using FKG inequality, $\mathbb{E}\left[D_{\ell}(\eta)\right] \geq \ell^{2} \cdot P_{4 \ell}$.
- Second observable: Work in annulus $\Lambda(3 \ell) \backslash \Lambda(\ell)$ with + or boundary conditions inside and outside.
- Ground-state energies $\mathcal{E}^{+,+}, \mathcal{E}^{-,-}, \mathcal{E}^{+,-}, \mathcal{E}^{-,+}$. Functions of field η.
- Surface tension: $\tau_{\ell}(\eta):=-\left(\varepsilon^{+,+}+\varepsilon^{-,-}-\varepsilon^{+,-}-\varepsilon^{-,+}\right)$.

Main steps

- Step 1 (upper bound): $\mathbb{E}\left[\tau_{\ell}(\eta)\right] \leq C J \cdot \ell \cdot P_{\ell-1}$.
- Step 2 (exact expression):

$$
\mathbb{E}\left[\tau_{\ell}(\eta)\right]=\frac{2 \varepsilon}{\ell} \int_{-\infty}^{\infty} \mathbb{E}\left[D_{\ell}\left(\eta^{t}\right)\right] d t
$$

with $\eta^{t} \equiv \eta+\frac{\mathrm{t}}{\ell} \quad$ inside $\quad \Lambda(\ell)$,

$$
\eta^{t} \equiv \eta \quad \text { outside } \Lambda(\ell)
$$

Note: the sum $\sum_{v \in \Lambda(\ell)} \eta_{v}$ increases by t standard deviations in η^{t}

- Put together, these imply the anti-concentration bound

$$
\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}\left(D_{\ell}\right)}<\frac{1}{2}\right) \geq \mathbb{P}\left(|N(0,1)|>C \cdot \frac{J}{\varepsilon} \cdot \frac{P_{\ell-1}}{P_{4 \ell}}\right)
$$

Variance bound

- Anti-concentration bound:

$$
\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}\left(D_{\ell}\right)}<\frac{1}{2}\right) \geq \mathbb{P}\left(|N(0,1)|>C \cdot \frac{J}{\varepsilon} \cdot \frac{P_{\ell-1}}{P_{4 \ell}}\right)
$$

- Right-hand side is constant when P_{ℓ} approximately a power of ℓ.
- Step 3: This is contrasted with a variance bound:

If $P_{\ell} \approx \frac{1}{\ell^{\delta}}$ then $\operatorname{Var}\left(D_{\ell}\right) \leq C \cdot \delta \cdot\left(\mathbb{E}\left(D_{\ell}\right)\right)^{2}$.

- Chebyshev's inequality implies that $\mathbb{P}\left(\frac{D_{\ell}}{\mathbb{E}\left(D_{\ell}\right)}<\frac{1}{2}\right)<C \cdot \delta$
- Contradiction arises if δ is too small.

Step 1: surface tension upper bound

- Claim: $\mathbb{E}\left[\tau_{\ell}(\eta)\right] \leq C J \cdot \ell \cdot P_{\ell-1}$
with $\tau_{\ell}(\eta):=-\left(\mathcal{E}^{+,+}+\varepsilon^{-,-}-\varepsilon^{+,-}-\mathcal{E}^{-,+}\right)$.
- Proof: Let $\sigma^{s, s^{\prime}}$ be the ground state in $\Lambda(3 \ell) \backslash \Lambda(\ell)$ subject to s, s^{\prime} boundary conditions inside and outside. Then $\mathcal{E}^{s, S^{\prime}}$ is its energy.
- Form mixed configurations $\tilde{\sigma}^{+,-}$and $\tilde{\sigma}^{-,+}$:

$$
\begin{aligned}
& \tilde{\sigma}^{s, S^{\prime}} \equiv \sigma^{s, S} \quad \text { on } \Lambda(3 \ell) \backslash \Lambda(2 \ell) \\
& \tilde{\sigma}^{s, S^{\prime}} \equiv \sigma^{s^{\prime}, s^{\prime}} \text { on } \Lambda(2 \ell) \backslash \Lambda(\ell)
\end{aligned}
$$

and write $\tilde{\mathcal{E}}^{s, s \prime}$ for their energy with s, s^{\prime} boundary conditions.

- Of course, $\varepsilon^{+,-} \leq \tilde{\varepsilon}^{+,-}$and $\varepsilon^{+,-} \leq \tilde{\varepsilon}^{+,-}$by def. of ground state. Thus

$$
\tau_{\ell}(\eta) \leq-\left(\varepsilon^{+,+}+\mathcal{\varepsilon}^{-,-}-\tilde{\varepsilon}^{+,-}-\tilde{\varepsilon}^{+,-}\right)
$$

- The sole contribution to the right-hand side comes from the bonds of $\partial \Lambda(2 \ell)$ where $\sigma^{+,+}$differs from $\sigma^{-,-}$. Taking expectation over the random field finishes the proof.

Step 2: formula for surface tension

- Claim: $\mathbb{E}\left[\tau_{\ell}(\eta)\right]=\frac{2 \varepsilon}{\ell} \int_{-\infty}^{\infty} \mathbb{E}\left[D_{\ell}\left(\eta^{t}\right)\right] d t$
with $\eta^{t} \equiv \eta+\frac{t}{\ell}$ inside $\Lambda(\ell)$,

$$
\begin{aligned}
& \eta^{t} \equiv \eta \quad \text { outside } \Lambda(\ell) \\
& D_{\ell}\left(\eta^{t}\right):=\left|\left\{v \in \Lambda(\ell): \sigma_{v}^{\Lambda(3 \ell),+}\left(\eta^{t}\right)>\sigma_{v}^{\Lambda(3 \ell),-}\left(\eta^{t}\right)\right\}\right|
\end{aligned}
$$

- Proof: Let $\mathcal{E}^{+}, \mathcal{E}^{-}$be the ground-state energies in $\Lambda(3 \ell)$ with +,boundary conditions, respectively.
- Set $G(\eta):=-\left(\mathcal{E}^{+}-\mathcal{E}^{-}\right)$
- Then
$\tau_{\ell}(\eta)=-\left(\mathcal{E}^{+,+}+\mathcal{E}^{-,-}-\mathcal{E}^{+,-}-\mathcal{E}^{-,+}\right)=\lim _{t \rightarrow \infty} G\left(\eta^{t}\right)-G\left(\eta^{-t}\right)$
- Now note that

$$
\frac{\partial G}{\partial \eta_{v}}(\eta)=2 \varepsilon \cdot 1\left\{\sigma_{v}^{\Lambda(3 \ell),+}(\eta)>\sigma_{v}^{\Lambda(3 \ell),-}(\eta)\right\}
$$

Step 3: Variance upper bound

- Claim: If $P_{\ell} \approx \frac{1}{\ell^{\delta}}$ then $\operatorname{Var}\left(D_{\ell}\right) \leq C \cdot \delta \cdot\left(\mathbb{E}\left(D_{\ell}\right)\right)^{2}$.
- Proof: Write $E_{v}:=\left\{\sigma_{v}^{\Lambda(3 \ell),+}(\eta)>\sigma_{v}^{\Lambda(3 \ell),-}(\eta)\right\}$.
- Need to upper bound, for $u, v \in \Lambda(\ell)$,

$$
\operatorname{Cov}\left(1\left\{E_{u}\right\}, 1\left\{E_{v}\right\}\right)=\mathbb{P}\left(E_{u} \cap E_{v}\right)-\mathbb{P}\left(E_{u}\right) \mathbb{P}\left(E_{v}\right)
$$

- Use $\mathbb{P}\left(E_{u}\right) \geq P_{4 \ell} \approx(4 \ell)^{-\delta}$

$$
\mathbb{P}\left(E_{u} \cap E_{v}\right) \leq\left(P_{\operatorname{dist}(u, v) / 2}\right)^{2} \approx(\operatorname{dist}(u, v) / 2)^{-2 \delta}
$$

- If δ is small and, say, $\operatorname{dist}(u, v) \geq \ell / 100$, get

$$
\operatorname{Cov}\left(1\left\{E_{u}\right\}, 1\left\{E_{v}\right\}\right) \leq\left(\frac{200}{\ell}\right)^{2 \delta}-\left(\frac{1}{4 \ell}\right)^{2 \delta} \approx c \cdot \delta \cdot \ell^{-2 \delta}
$$

- Can sum such upper bounds to get required result.

Open questions

- Is there a Kosterlitz-Thouless-type transition from exponential to power-law decay of correlations as the random field becomes weaker?
Mechanism which would imply power-law bound: If the influence percolation behaves like Mandelbrot percolation. (connectivity of Mandelbrot percolation - Chayes-Chayes-Durrett)
- For systems with continuous symmetry, such as the random-field XY model, the critical dimension for long-range order is $d_{c}=4$ (ImryMa 75, Aizenman-Wehr 89). Obtain a quantitative decay of correlations there.

