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Random-field Ising model 
• Standard Ising model:  

Domain Λ ⊂ ℤ𝑑. Boundary conditions 𝜏 outside Λ. 
Energy of configuration 𝜎: Λ → {−1,1} given by  

𝐻Λ,𝜏 𝜎 = −𝐽  𝜎𝑢𝜎𝑣 −
𝑢~𝑣,
𝑢,𝑣∈Λ

𝐽  𝜎𝑢𝜏𝑣
𝑢~𝑣,

𝑢∈Λ,𝑣∉Λ

− ℎ  𝜎𝑣

𝑣∈Λ

 

• At temperature 𝑇:  

Prob 𝜎 ∝ exp −
1

𝑇
𝐻Λ,𝜏 𝜎  

• Random-field Ising model (RFIM): 

𝐻Λ,𝜏 𝜎 = −𝐽  𝜎𝑢𝜎𝑣 −
𝑢~𝑣,
𝑢,𝑣∈Λ

𝐽  𝜎𝑢𝜏𝑣
𝑢~𝑣,

𝑢∈Λ,𝑣∉Λ

− 𝜀  𝜂𝑣𝜎𝑣

𝑣∈Λ

 

       with 𝜂𝑣  a quenched random field. 

• In this talk – 𝜂𝑣  independent standard Gaussians. 2 



Long-range order 
• The Ising model, at ℎ = 0, exhibits long-range order at low 

temperatures. 

• Is this the case also for the random-field Ising model? 

• No, when 𝜀 is large! (strong disorder regime) 

• Proof for 𝑇 = 0: 

      If 𝜂𝑣 > 2𝑑 ⋅
𝐽

𝜀
 then necessarily sign 𝜎𝑣 = sign 𝜂𝑣 . 

• At large 𝜀, such vertices are likely to separate the origin from the 
boundary of Λ(L). Thus 

𝔼 < 𝜎0 >𝑇
Λ 𝐿 ,+

𝐿→∞
0 

     with convergence occurring exponentially fast in 𝐿. 

• Recent more quantitative results by Camia-Jiang-Newman(18). 
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Imry-Ma phenomenon 
• Imry-Ma (75) considered small 𝜀 (weak disorder) and argued that: 

- Long-range order occurs in dimensions 𝑑 ≥ 3. 
- No long-range order in two dimensions: 
Unique Gibbs state for all 𝑇 ≥ 0. Even for arbitrarily weak disorder! 

• An essence of the argument: 
With plus bounday conditions, 
is the plus configuration favored over the minus configuration? 
Energy difference is 

𝐻Λ 𝐿 ,+ + − 𝐻Λ 𝐿 ,+ − ≈ J ⋅ 𝐿𝑑−1 ± 𝜀 ⋅ 𝐿
𝑑
2  

     Boundary wins when 𝑑 ≥ 3. 
     Random field wins, due to random fluctuations, when 𝑑 = 2. 

• Proofs. d ≥ 3: Imbrie (𝑇 = 0, 85), Bricmont-Kupiainen (88) 

                   𝑑 = 2: Aizenman-Wehr (89)  
(quantum: Aizenman-Greenblatt-Lebowitz 09) 4 



Rate of decay of boundary effect 
• How fast does the boundary effect decay in two dimensions? 

How large is 𝔼 < 𝜎0 >𝑇
Λ 𝐿 ,+

? 

• Main result (power-law upper bound):  
In two dimensions, for any T ≥ 0, 𝐽, 𝜀 > 0, 

𝔼 < 𝜎0 >𝑇
Λ 𝐿 ,+

≤
1

𝐿𝛾
   for large L 

     the obtained power 𝛾 is very small, behaving as 

                 𝛾 ≈ exp −𝑐 
𝐽

𝜀

2
   for small

𝜀

𝐽
 

• Corollary (by FKG inequality): 
A similar power-law upper bound for correlations in the RFIM 

• Improves Chatterjee (17) 
1

log(log 𝐿 )
 decay. 
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Ideas of proof for 𝑇 = 0 
• Denote ground-state configuration by 𝜎Λ,𝜏. 

• Influence-percolation: 𝑃𝐿 ≔ 𝔼 𝜎0
Λ 𝐿 ,+

= ℙ 𝜎0
Λ 𝐿 ,+

> 𝜎0
Λ 𝐿 ,−

 

Main result: Power-law upper bound on 𝑃𝐿. 

• First observable: The number of sites in Λ ℓ  influenced by 
boundary conditions on Λ 3ℓ  

𝐷ℓ 𝜂 : = 𝑣 ∈ Λ ℓ ∶ 𝜎𝑣
Λ 3ℓ ,+

𝜂 > 𝜎𝑣
Λ 3ℓ ,−

𝜂  

• Note: Using FKG inequality, 𝔼 𝐷ℓ 𝜂 ≥ ℓ2 ⋅ 𝑃4ℓ. 

• Second observable: Work in annulus Λ 3ℓ ∖ Λ(ℓ) with + or − 
boundary conditions inside and outside. 

• Ground-state energies ℰ+,+, ℰ−,−, ℰ+,−, ℰ−,+. Functions of field 𝜂. 

• Surface tension:  𝜏ℓ 𝜂 ≔ − ℰ+,+ + ℰ−,− − ℰ+,− − ℰ−,+ . 
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Main steps 
• Step 1 (upper bound):  𝔼[𝜏ℓ 𝜂 ] ≤ 𝐶𝐽 ⋅ ℓ ⋅ 𝑃ℓ−1. 

• Step 2 (exact expression):  

𝔼[𝜏ℓ 𝜂 ] =
2𝜀

ℓ
 𝔼[𝐷ℓ 𝜂𝑡 ] 𝑑𝑡

∞

−∞

 

     with  𝜂𝑡 ≡ 𝜂 +
t

ℓ
    inside     Λ ℓ , 

 𝜂𝑡 ≡ 𝜂         outside  Λ ℓ . 

     Note: the sum  𝜂𝑣𝑣∈Λ ℓ  increases by 𝑡 standard deviations in 𝜂𝑡 

• Put together, these imply the anti-concentration bound 

ℙ
𝐷ℓ

𝔼(𝐷ℓ)
<

1

2
≥ ℙ 𝑁 0,1 > 𝐶 ⋅

𝐽

𝜀
⋅
𝑃ℓ−1

𝑃4ℓ
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Variance bound 
• Anti-concentration bound: 

ℙ
𝐷ℓ

𝔼(𝐷ℓ)
<

1

2
≥ ℙ 𝑁 0,1 > 𝐶 ⋅

𝐽

𝜀
⋅
𝑃ℓ−1

𝑃4ℓ
 

• Right-hand side is constant when 𝑃ℓ approximately a power of ℓ. 

• Step 3: This is contrasted with a variance bound: 

If 𝑃ℓ ≈
1

ℓ𝛿 then Var 𝐷ℓ ≤ 𝐶 ⋅ 𝛿 ⋅ 𝔼 𝐷ℓ
2

. 

• Chebyshev’s inequality implies that ℙ
𝐷ℓ

𝔼(𝐷ℓ)
<

1

2
< 𝐶 ⋅ 𝛿 

• Contradiction arises if 𝛿 is too small. 
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Step 1: surface tension upper bound 

• Claim: 𝔼[𝜏ℓ 𝜂 ] ≤ 𝐶𝐽 ⋅ ℓ ⋅ 𝑃ℓ−1 
with 𝜏ℓ 𝜂 ≔ − ℰ+,+ + ℰ−,− − ℰ+,− − ℰ−,+ . 

• Proof: Let 𝜎𝑠,𝑠′ be the ground state in Λ 3ℓ ∖ Λ ℓ  subject to 𝑠, 𝑠′ 
boundary conditions inside and outside. Then ℰ𝑠,𝑠′ is its energy. 

• Form mixed configurations 𝜎 +,− and 𝜎 −,+: 
      𝜎 𝑠,𝑠′ ≡ 𝜎𝑠,𝑠     on Λ 3ℓ ∖ Λ 2ℓ  

𝜎 𝑠,𝑠′ ≡ 𝜎𝑠′,𝑠′
  on Λ 2ℓ ∖ Λ ℓ  

and write ℰ 𝑠,𝑠′ for their energy with 𝑠, 𝑠′ boundary conditions. 

• Of course, ℰ+,− ≤ ℰ +,− and ℰ+,− ≤ ℰ +,− by def. of ground state. 

Thus  𝜏ℓ 𝜂 ≤ − ℰ+,+ + ℰ−,− − ℰ +,− − ℰ +,−  

• The sole contribution to the right-hand side comes from the bonds 
of 𝜕Λ(2ℓ) where 𝜎+,+ differs from 𝜎−,−. 
Taking expectation over the random field finishes the proof. 9 



Step 2: formula for surface tension 

• Claim: 𝔼[𝜏ℓ 𝜂 ] =
2𝜀

ℓ
 𝔼[𝐷ℓ 𝜂𝑡 ] 𝑑𝑡

∞

−∞
 

with 𝜂𝑡 ≡ 𝜂 +
𝑡

ℓ
   inside    Λ ℓ , 

         𝜂𝑡 ≡ 𝜂          outside Λ ℓ . 

𝐷ℓ 𝜂𝑡 : = |{𝑣 ∈ Λ ℓ ∶ 𝜎𝑣
Λ 3ℓ ,+

(𝜂𝑡) > 𝜎𝑣
Λ 3ℓ ,−

𝜂𝑡 }| 

• Proof: Let ℰ+, ℰ− be the ground-state energies in Λ 3ℓ  with +,- 
boundary conditions, respectively. 

• Set 𝐺 𝜂 ≔ − ℰ+ − ℰ−  

• Then 
𝜏ℓ 𝜂 = − ℰ+,+ + ℰ−,− − ℰ+,− − ℰ−,+ = lim

𝑡→∞
𝐺 𝜂𝑡 − 𝐺(𝜂−𝑡) 

• Now note that 
𝜕𝐺

𝜕𝜂𝑣
(𝜂) = 2𝜀 ⋅ 1 𝜎𝑣

Λ 3ℓ ,+
(𝜂) > 𝜎𝑣

Λ 3ℓ ,−
𝜂  
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Step 3: Variance upper bound 

• Claim: If 𝑃ℓ ≈
1

ℓ𝛿 then Var 𝐷ℓ ≤ 𝐶 ⋅ 𝛿 ⋅ 𝔼 𝐷ℓ
2

. 

• Proof: Write 𝐸𝑣 ≔ 𝜎𝑣
Λ 3ℓ ,+

𝜂 > 𝜎𝑣
Λ 3ℓ ,−

𝜂 . 

• Need to upper bound, for 𝑢, 𝑣 ∈ Λ ℓ , 
Cov 1 𝐸𝑢 , 1 𝐸𝑣 = ℙ 𝐸𝑢 ∩ 𝐸𝑣 − ℙ(𝐸𝑢)ℙ(𝐸𝑣) 

• Use ℙ 𝐸𝑢 ≥ 𝑃4ℓ ≈ 4ℓ −𝛿  

        ℙ 𝐸𝑢 ∩ 𝐸𝑣 ≤ 𝑃dist(𝑢,𝑣)/2

2
≈ dist(𝑢, 𝑣)/2 −2𝛿 

• If 𝛿 is small and, say, dist 𝑢, 𝑣 ≥ ℓ/100, get 
 

Cov 1 𝐸𝑢 , 1 𝐸𝑣 ≤
200

ℓ

2𝛿

−
1

4ℓ

2𝛿

≈ 𝑐 ⋅ 𝛿 ⋅ ℓ−2𝛿 

• Can sum such upper bounds to get required result. 
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Open questions 
• Is there a Kosterlitz-Thouless-type transition from exponential to 

power-law decay of correlations as the random field becomes 
weaker? 
Mechanism which would imply power-law bound: If the influence 
percolation behaves like Mandelbrot percolation. 
(connectivity of Mandelbrot percolation – Chayes-Chayes-Durrett) 

• For systems with continuous symmetry, such as the random-field XY 
model, the critical dimension for long-range order is 𝑑𝑐 = 4 (Imry-
Ma 75, Aizenman-Wehr 89). 
Obtain a quantitative decay of correlations there. 
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